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Abstract: - Mathematical modeling technique based on solving the nonlinear Maxwell’s equations (Eqs.) 
rigorously using the decomposition approach on nonlinear autonomous blocks partially filled by the nonlinear 
media with a “strong” nonlinearity (NABs) and reliable engineering method for numerical computation of 
microwave and photonic nonlinear 3D devices engaging strong nonlinearities, applicable in CAD, were 
developed. To determine the NAB descriptors the iterative computational process for solving the nonlinear 3D 
diffraction boundary problems with the non-asymptotic radiation boundary conditions on the NAB bounds was 
performed using the projection method. The iteration method of recomposition of NABs is developed using the 
linearization of its descriptors. Using the computational algorithm for solving nonlinear diffraction boundary 
problems performed as NABs and improved computation algorithm of determination of bifurcation points the 
nonlinearity thresholds in the magnetic nanoarrays at microwaves were numerically simulated. 
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1 Introduction 

There exists an increasing demand to develop 
new microwave 3D devices containing distributed 
insertions of nonlinear gyromagnetic and 
semiconductor media having a strong nonlinearity 
for high power applications and nonlinear analogue 
signal processing operating in radar detection, 
communication, and instrumentation. 

Investigation of strong nonlinear effects: 
frequency multiplication, self-excited oscillations, 
parametric amplification and  excitation, solitons, 
instability of electromagnetic (EM), magnetostatic 
and  spin waves in 3D systems of arbitrary shaped 
magnetic nanoelements is important to design 
frequency multipliers, limiters, noise rejectors, 
frequency selective systems for microwave and 
magnetophotonic applications, nanosensor arrays, 
and Tbyte information storage [1].  

A plethora of strong nonlinear effects in graphene 
in the teraherz (THz),  infrared (IR) and optical 
frequency ranges,  was successfully demonstrated, 
including saturable absorption and nonlinear 
refraction, higher harmonic generation and wave-
mixing processes, optical limiting, frequency 
mixing  and frequency multiplication attracting 
increasing interest due to the possible applications 
for optical switching, novel optical sources, and 
harmonic frequency conversion, in ultrafast lasers 
and optical sensors [2]. These photonic devices are 
presently in the process of early development. 

The development and manufacturing of 
microwave or photonic nonlinear 3D devices 
engaging strong nonlinearities depends on the 
development of computer aided design (CAD) tools, 
based on accuracy and the adequacy of 
mathematical models by  solving Maxwell`s 
equations (Eqs.) rigorously. Research and prediction 
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of strong nonlinear physical phenomena and effects 
on these devices requires to develop new 
approaches for mathematical modeling. 

The accurate EM modeling of nonlinear 
microwave and photonic devices by solving the 
nonlinear Maxwell’s Eqs. rigorously is possible 
only using the decomposition approach [3], because 
of the complicated shape and the various size would 
cause computing problems.  

Now the decomposition approach, consisting in 
division (or decomposition) of 3D devices into 
independently analyzed small volumes or 
autonomous blocks (Abs) with following 
recomposition of descriptors of ABs, is used to 
solve linear problems of electrodynamics [3-6]. 
Descriptors of known ABs filled by linear 
homogeneous media (multimode ABs [4], minimal 
ABs [5], ABs with Floquet channels [6]) ABs in the 
form of multichannel multimode scattering (or 
conductivity, resistance) matrices have been 
calculated by solving the Maxwell’s Eqs. 
complemented by simplified equations of motion in 
the material medium of the AB filling. However, 
these AB descriptors (S-, Y-, Z- matrices) can be 
used only in a case of ABs filled by media with a 
weak degree of nonlinearity.  

In general, commercially available FEM and 
FTDT software packages are used to design 
microwave and photonic devices. These packages  
are adequate of the technology level of the present 
day, but do not include the deep physical processes 
(including strong nonlinearities) upon which the 
nonlinear microwave and photonic devices of the 
near future will be based. Some relevant studies can 
be found in [7-9].  

In our previous works linear or nonlinear 
interactions of EM waves with magnetic [10-13] 
and semiconductor [14] insertions in waveguides at 
microwaves and with graphene nanostructures 
[15,16] at THz frequencies were numerically 
simulated by solving the Maxwell Eqs. 
complemented by simplified Eqs. of motion in the 
AB filling medium. 

The goal of this work is to develop mathematical 
modeling technique based on solving of nonlinear 
boundary problems  and reliable engineering 
method for numerical computation of microwave 
and photonic nonline Dr. Galina Makeeva,ar 3D 

devices engaging strong nonlinearities, applicable in 
CAD. In this paper a decomposition approach using 
ABs partially filled by nonlinear media with a 
“strong” nonlinearity (NABs) for modeling of 
nonlinear 3D devices was developed, based on 
accuracy and the adequacy of mathematical models 
by solving the nonlinear 3D diffraction boundary 
problems. The descriptors of NABs, containing 
“strong” nonlinear medium insertion, are 
determined as system of nonlinear Eqs., connecting 
magnitudes of incident and reflected modes on input 
cross-sections channels. At first the recomposition 
of NABs in accordance with the decomposition 
scheme of 3D devices is performed using the 
iterative computational process. 

2 Reduction the Nonstationary 
Nonlinear Maxwell’s Equations to the 
System of Stationary Nonlinear 
Equations at Combination 
Frequencies 

The rigorous statement of the boundary problems 
for the nonlinear 3D devices filled by the nonlinear 
dielectric, semiconductor, conducting or magnetic 
media consists in the following. It is necessary to 
solve the nonlinear Maxwell’s Eqs. 
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tEDtHrot +
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tHBtErot

∂
∂
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where ),,,()( tzyxEtE = , ),,,()( tzyxHtH =  are 
the electric and magnetic field intensity vectors, 

))(( tED  is the electric-flux density vector 

depending on the vector E ; ))(( tHB  is the 
magnetic induction vector depending on the vector 
H ; ))(( tEJ is the electric current density vector 

depending on the vector E . 

Considering an isotropic nonlinear media the 

dependences ))(( tED , ))(( tHB , ))(( tEJ  may be 
determined using the scalar nonlinear functions: 
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where )(,)( tHtE  are the moduli of the electric 

and magnetic field intensity vectors, 

correspondently; ))((),)(( tHtE µε  are the 

relative dielectric  constant and magnetic 
permeability, as nonlinear functions of the modulus 

)(tE or )(tH , ))(( tEσ  is the nonlinear 

conductivity as the nonlinear function of the moduli 

)(tE ; 0ε , 0μ  are the electric or magnet constants.  

Staying within the limits of the 
phenomenological approach, the nonlinear 

dependences ))(( tED , ))(( tHB , ))(( tEJ may be 
represented approximately by using the uniform 
approximation by the high order polynomials: 
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where the approximation coefficients are defined 
from the experiments.  

Let’s represent )(tE , )(tH , )(,)( tHtE  in 

the form of series of terms of the combination 
frequencies:
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where an index m is determined at ensemble of 
indices { }rmmm ,...,, 21 , r – a number of harmonic 
transmitter sources.  

Inserting (2), (3) into (1) and taking into account 
(4), we obtain the system of nonlinear stationary 
Maxwell’s Eqs. at the combination frequencies: 
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3 Units Descriptor of Nonlinear 
Autonomous Block  

According to the decomposition approach, the 
region of 3D devices, where the EM problem is to 
be solved, is split by imaginary boundaries into 
subregions, which are referred to as linear or 
nonlinear ABs and regarded as “waveguide 
transformers“ [3].  

Consider nonlinear ABs in the form of 
rectangular parallelepiped partially filled by the 
nonlinear medium with a “strong” nonlinearity, 
having as the input sections the virtual multimode 
channel (NABs) (Fig. 1) as the “waveguide 
transformer” [3]. 

The dependence of the magnitudes )()( mkc ωα
− of 

reflected waves on the magnitudes )()( lnc ωβ
+  of 

incident waves on the virtual channels of NABs is 
determined in the form of the system of nonlinear 
Eqs: 

MmNk
cFc mkmk

±±===
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where αN is the number of accounted eigenwaves in
α -th virtual channel, M  is the number of 
accounted combination frequencies, +c  is the 
argument determined at ensemble 
{ }ββ ωωω Nccc ln )(...,)(),( )(1)2(11)1(1

+++ .  

 

Fig.1. Nonlinear autonomous block with virtual 
channels. partially filled by the nonlinear medium 
(NAB): 0V  is the region inside the AB; V is the 
region, filled by nonlinear medium with a “strong” 
nonlinearity; 0VV − is the region, filled by a linear 
medium with relative permittivity εr and relative 
magnetic permeability µr  

The nonlinear function );()(
+cF mk ωα  describing 

the dependence of magnitudes )()( mkc ωα
−  on 

magnitudes )()( lnc ωβ
+  on the input cross-sections of 

NABs may be used alternatively as the NAB 
descriptor. 

The computational algorithm to determine the 
NAB descriptors was created using the numerical 
method of simple iteration [17]. For every step of 
iteration it is necessary to solve the nonlinear 
Maxwell’s Eqs (1) with the non-asymptotic 
radiation boundary conditions [18] on NAB bounds:  
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where )(),( )()( mkmk he ωω αα  are the transverse 
components  of electric and magnetic fields of 
eigenwaves in virtual channels, )(ωR mk  is the 
normalization coefficient.  

At first step of iteration the computational 
algorithm for calculating the scattering matrix S of 
NAB (Fig.1) was developed by solving the 3D 
diffraction boundary problem using the Galerkin 
projection method [17].  We use the eigenwaves of 
the rectangular resonator (Fig. 1) as the basis 
functions and determine the eigenfrequencies and 
the eigenwaves of the resonator by solving the 
homogenous Maxwell`s Eqs with periodic boundary 
conditions on the NAB bounds (Fig.1). We find the 
solution of the 3D diffraction problem for the 
stationary Maxwell`s  Eqs. (5) with the boundary 
conditions (7) in the form of Fourier’s series, using 
the eigenwaves of resonator inside the NAB region 
(Fig. 1), or eigenwaves of channels on the NAB 
cross-sections Sβ  (Fig. 1). The tangential EM field 
on each NAB cross-section Sβ is represented as a 
superposition of eigenwaves of channels [6]. When 
the magnitudes )()( lnc ωβ

+  are known, the unknown 

magnitudes )()( mkc ωα
−  can be found. Substituting 

the Fourier’s series into the Eqs (5), which are 
represented in projection integral form [19], we 
obtain a system of nonlinear algebraic Eqs. These 
algebraic Eqs. are solved by using the Newton’s 
method [17]. 

Using the iterative method we determine the 
NAB descriptor at every step of iteration by using 
the descriptors of linearized AB in the form the 
multimode S-matrix. The magnitudes )()( mnc ωβ

+  

and the currents )( mJ ω , )( mZ ω , localized in the 
volume of  parallelepipeds (Fig. 1), are known for 
every iteration; the magnitudes )()( mkc ωα

−  are 
unknown. 

The solution of the nonlinear Maxwell’s Eqs. (5) 
with the boundary conditions (7) is represented in 
the matrix form: 

+−
∑

− += SCCC
,                                    (8) 

where S  is the multimode scattering matrix of 
linearized AB (the analytical expressions of S-
parameters of linear AB with virtual Floquet 
channels were obtained in [6]), −

∑C  is a radiation 
vector determined by using the exciting currents 
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)( mJ ω , )( mZ ω ; −+ CC ,  are the vectors with 

components )()( mnc ωβ
+ , )()( mkc ωα

− , 
correspondingly. 

Solving the EM problem of excitation of waves 
in the rectangular cavity (Fig.1) by using the 
method, described in details in [20], we obtain the 
following system of linear algebraic Eqs. (SLAE) 
for determining of components of the radiation 
vector −

∑C : 

fC)( T =Υ+Ι −
Σ ,                                    (9) 

where Ι  is the unitary matrix, TΥ  is the transposed 
conductance matrix Y of AB, filled with linear 
media [3], f  is the vector with the components 
determined as  

dVHZ
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As a result the magnitudes )()( mkc ωα
−  are 

determined for each step of iteration. 

For the transition to the next iteration it is 
necessary to redefine the currents )( mJ ω , )( mZ ω  
by using the projection method [17] to determine the 
EM fields )( mE ω , )( mH ω  in the rectangular 
cavity (Fig.1) having bounds as magnetic or electric 

walls.  

4 Recomposition of Nonlinear 
Autonomous Blocks  

In order to realize the recomposition of NABs (or 
nonlinear ABs with linear ABs) for 3D devices it is 
necessary to solve the system of nonlinear Eqs (6). 
The algorithmization of this complex computational 
procedure is difficult. That’s why the iterative 
method of the recomposition of NABs, based on the 
linearization of its descriptors, is proposed. During 
every iteration we replace NABs by linearized ABs 
with descriptors as multimode S-matrices. After that 
the recomposition of NABs (or NABs and ABs) in 
accordance with the decomposition scheme [3] of 
3D devices is performed.  

Let’s represent the nonlinear functions 

);()(
+cF mk ωα (6) with their generalized Taylor's 

series: 
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where M  is the number of the accounted 
combination frequencies, L  is the number of virtual 
channels, βN  is the number of the accounted 

eigenwaves inβ -th virtual channel . 

Taking into account the partial derivatives up to 
the first order in (10), as the first approximation, 
let’s reduce the system of nonlinear Eqs to SLAE. It 
results the linearized dependence of magnitudes of 
reflected modes )()( mkc ωα

−  on magnitudes of 

incident mode )()( lnc ωβ
+  and it may be represented 

in the form: 

+−
∑

− += CSCC H ,                             (11) 

where +−−
∑ −= 00 CSCC H . 

The components of vectors +
0C , −

0C , +C , −C   

are { })(0
)( lnc ωβ

+ , { }+omk cF ;()( ωα , { })()( lnc ωβ
+ , 

{ })()( mkc ωα
− , correspondingly. The scattering matrix 

HS  is arranged on the combination frequencies, the 
input channels, the types of eigenwaves. The S-
parameters of matrix HS  are determined in the 
following way: 

)(
);(
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The components of the vector −
∑C  are 

{ })()( mkc ωα
−
∑ , the radiation vector −

∑C  is arranged 

in the same way as the vector −C . 

The linearized ABs are included in the 
decomposition scheme by using the additional 
fictive ABs with descriptors as the scattering matrix 
[3]. Using the fictive ABs the recognizing access for 
components of the vectors −

∑C  and +C , −C  is 
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realized. It is necessary to organize and control the 
computational process. 

The iterative computational process of 
recomposition of NABs consists in the following. 
Specifying the initial approximation for the value 

+
0c  we determine S-parameters of matrices HS  and 

the components of vectors −
∑C  for all NABs 

included in the decomposition scheme of 3D 
devices. By connecting the descriptors of linearized 
ABs as the scattering matrix HS  we obtain the 
resulting sum S-matrix of nonlinear 3D device for 
the first iteration. If  the magnitudes of incident 
waves in input channels of 3D device are known we 
determine the magnitudes of reflected modes and 
the components of the vector +C , −C  in virtual 
channels.  

After every iteration we verify the results of 
computing in the following way. If the values of 
components of vectors +C , −C  are satisfied with a 
prescribed accuracy to the nonlinear Eqs. (6), the 
iterative computational process is finished. If not, at 
the next iteration the S-parameters of matrices HS  

and the components of the vector −
∑C  are 

determined assigning the initial approximation 
++ = CC0  from (11), (12) and the process of 

recomposition of linearized ABs is repeated.  

5. Numerical Simulation of 
Nonlinearity Thresholds in Magnetic 
Nanoarrays  

Let us consider, as an example, the problem of 
nonlinear diffraction of EM waves by magnetic 
nanoarrays of ferromagnetic nanoparticles. To solve 
the nonlinear diffraction boundary problem a 
computational algorithm was performed based on 
the decomposition approach by NABs developed by 
us. 

For the calculations we consider the model of the 
elementary cell of the 2D periodic magnetic 
nanoarray, where each cell contains one 
ferromagnetic spherical nanoparticle (Fig.1) (or any 
other shape of a nanoparticle) as a NAB. The cell is 
described by its NAB descriptor, taking into account 
electrodynamic boundary conditions, the geometry 
of the array, and the shape of magnetic nanoparticle. 

To determine the NAB descriptors the 

computational algorithm was developed by solving 
the nonlinear 3D diffraction boundary problem for 
the Maxwell`s equations using electrodynamic 
boundary conditions, complemented by the Landau-
Lifshitz equation of motion of the magnetization 
vector in a ferromagnet, including the exchange 
term [21]. 

For the analysis of strong nonlinear phenomena 
(in particular, the parametric instability) in magnetic 
nanoarrays the numerical method, using the 
bifurcation points of the nonlinear Maxwell’s 
operator, developed by us [22, 23], is applied. 

The results of computing the instability regions 
for the parametric excitation of magnetostatic and 
spin waves in the nonlinear magnetic nanoarrays by 
the incident pumping wave depending on the 
bifurcation parameters, i.e. the magnitude of the 
pumping wave C+1(1)(ωH) and the normalized 
frequency (frequency of the signal wave ω0 with 
respect to the pumping frequency ωH), for various 
separations h of ferromagnetic nanoparticles are 
shown in Fig. 2.  

 

Fig. 2. Nonlinearity thresholds in  the nonlinear 
magnetic nanoarrays of ferromagnetic nanoparticles 
(r=250 nm) for different separation h: curves 1- 
h=3000 nm; 2 - 750 nm; 2- 650 nm; ω0 =2πf0 - 
frequency of the signal wave; f0=9.330 GHz; ωH - 
frequency of the pumping wave; C+1(1)(ωH) - 
magnitude of the incident pumping wave; bias field; 
H0=ω/γ, M0=0.026 T 

The threshold magnitudes C+1(1)(ωH) of pumping 
EM wave (the curves in Fig. 2), where the strong 
nonlinear processes occur, are determined by 
computing the bifurcation points of the nonlinear 
Maxwell’s operator. 
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According to the Lyapunov stability theory the 
curves (shown in Fig. 2) divide the instability 
regime of the parametric excitation of magnetostatic 
and spin waves (above the curves) from the stable 
regime of parametric amplification (below the 
curves) [22].  

The results of numerical simulation show that the 
nonlinearity thresholds are reduced at regime of 
parametric instability, with decreasing separation 
into the nm range the instabilities occur at lower 
inputs, demonstrating the power sensitivity of 
magnetic nanoarrays. 

Conclusion 
We develop the electrodynamical analysis 

methodology, differing from the known ones, that it 
is based on rigorous solving of Maxwell's equations 
complemented by the Eqs. of motion in the 
nonlinear material medium of the AB filling without 
any simplification of Eqs. and boundary conditions. 

This methodology uses the decompositional 
approach, that’s why it is possible to model 
nonlinear 3D devices having complex geometry, to 
make a quick transition from one boundary value 
problem to other ones, to alleviate numerical 
problems, connected with the instability of 
computing processes. That’s why the developed 
computational algorithms for calculation of S-
matrices of an NAB can be used for the 
electrodynamic analysis of microwave- and 
photonic nonlinear 3D devices containing inclusions 
of the nonlinear media with a “strong” nonlinearity 
of arbitrary shapes. 

The developed decomposition approach by using  
NABs can be applied for numerical simulation of 
time-stable and spatially nonuniform processes 
(with large amplitudes) in nonlinear  microwave  
and photonic 3D devices taking account costrained 
geometries. Modeling unstable nonlinear 
phenomena necessitates the NAB-based algorithm 
and the improved computations algorithm of 
determination of bifurcation points of the nonlinear 
Maxwell operator. 

The developed adequate models based on the 
solution of the nonlinear Maxwell equations (where 
the coefficients of strong nonlinearities of material 
media are defined from the experiments) without 
any simplifications of the equations and the 
boundary conditions make it possible to abandon the 

empirical approach to design the nonlinear 
microwave and photonic 3D devices. 

The computational algorithms for solving 
diffraction boundary problems using numerical 
methods of NABs can be included in software 
package, intended to be developed in the future for 
mathematical simulation and CAD of perspective 
microwave and photonic 3D devices using strong 
nonlinear phenomena. 
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